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Abstract

Six airborne magnetic surveys were analyzed with
the matched filtering and tilt derivative methods to
estimate source depths within the Transbrasiliano fault
system in northern Parand Basin, Brazil. Our
interpretation defined the structural framework within
three main depth zones, illuminating deep crustal,
basement, and basin magnetic sources. The deepest
zone exhibits three major northeast-trending crustal
discontinuities related to the Transbrasiliano lineament,
dividing the region into four geotectonic compartments. In
the intermediate depth zone, basement anomalies show
dextral displacement westward, with important splay
faults from the major transcurrent faults. Shallower
sources include granitic and alkaline intrusions, the Serra
Geral basalts boundaries, and reactivated brittle
structures.

Introduction

The Transbrasiliano lineament (Figure 1, TBL in
the inset) is a Neoproterozoic northeast-trending
transcurrent fault system (Schobbenhaus et al., 1975)
that separates two major tectonic domains in the South
America Platform (Cordani et al.,, 1984). The western
domain is comprised mainly of the Amazonian craton,
whereas the eastern domain is a set of orogenic belts,
allochthonous blocks, and cratonic rocks. During the time
of the Gondwana supercontinent (600 Ma), the African
Hoggar-Kandi lineament and the TBL were linked (Caby,
1989) in northern Ceara by the Sobral-Pedro Il shear
zone. This major fault system produces a distinctive,
continent-scale magnetic discontinuity from the Congo
region, Africa, to Sierras Pampeanas, Argentina
(Fairhead and Maus, 2003; Ramos et al., 2010). Along
the northern flank of Parand basin, the magnetic
expression of the TBL shows disparate trending
directions.

At least three important reactivation episodes
affected the TBL. Two of them occurred during
Cambrian-Ordovician and Silurian-Devonian time, forming
small cratonic basins, including Jaibaras in Ceara state,
and Agua Bonita in Tocantins, respectively. The third

episode is related to the opening of the Atlantic Ocean in
Cretaceous time.

Northeast- and northwest-striking basement
structures were widely reactivated in the Parana basin,
causing block-bounded uplifts and subsidence. The initial
troughs of the Paranad basin were developed within
northeast-trending structures (Zalan et al., 1991; Heilbron
et al, 2000), some associated with the TBL. Late
Ordovician isopachs of the Parana basin show NE-SW
trending alignments, suggesting sedimentation controlled
by the TBL (Franca et al., 1995; Milani, 1997).

Our study consisted of two main approaches. The
first one provides a better understanding of the tectonic
framework of the Transbrasiliano lineament in northern
Parana basin. The second one identifies geological
evidence for how that tectonic controlled the evolution of
the Parana Basin, from initiation of subsidence to later
reactivation.

The study area is located at the northern Parana
basin and includes parts of Goias (GO), Mato Grosso
(MT), and Mato Grosso do Sul (MS) states (Figure 1).

Geology of the study area

Although the study area is partially covered by
Cenozoic sediments of the Araguaia and Pantanal
formations, most of the area exhibits exposures of Parana
basin sedimentary units and underlying basement.

An important NE-SW-trending fault crosses the
northern flank of the Parana basin near Bom Jardim de
Goias and marks the tectonic contact between two types
of Neoproterozoic basement. The eastern basement is
recognized as the Arenépolis Magmatic Arc, which
consists of orthogneiss units that generally separate
volcano-sedimentary belts (Pimentel and Fuck, 1992).
The western basement is represented by the Paraguay
fold belt, mainly comprised of the Cuiaba Group,
consistent of metasedimentary rocks, strongly folded and
metamorphosed during the Brasiliano orogeny (Alvarenga
and Trompette, 1993).

According to Zalan et al. (1991), the most common
northeast-trending structures in the Parand basin are
related to strike-slip tectonics, including en echelon faults,
reverse faults and folds, and flower structures. The
preferable kinematic character is transcurrent movement,
as observed in the TBL. The opening of the Atlantic
Ocean in Cretaceous time formed extensional northwest-
trending structures that accommodate tholeitic basalt
dikes in Jurassic-Eocretaceous time, and alkaline
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intrusions in the Late Cretaceous in the Parana basin
(Almeida and Melo, 1981). The major depocenter
comprises the thickest basalt of this basin, reaching up to
2000 m deep.

Methodology

Our analysis was based on the anomalous
magnetic field; i.e., the total measured field corrected for
diurnal variations, the main geomagnetic field (IGRF), and
leveling errors. These data were compiled from six
airborne geophysical surveys (Figure 1) with variable
characteristics, as described in Table 1.

Our primary motivation was to enhance magnetic
lineaments possibly related to tectonic structures. The tilt
derivative (Miller and Singh, 1994) of the magnetic
anomalous field was used to delineate and qualitatively
estimate the depth of linear magnetic sources (Salem et
al., 2010).

In addition, we used the matched filtering analyses
(Phillips, 2001) to separate magnetic anomalies into
additive components representing different source
depths. This technique is based on potential field spectra
(Spector and Grant, 1970), where radially symmetric parts
of the spectra are modeled to determine amplitude and
Wiener filters that enhance anomalies originating from
important depth ranges (Phillips, 2001).

Our analysis was developed based on two main
anomalous magnetic field grids. The first grid was
developed by merging all of the individual grids (Table 1),
with the exception of the Parana basin survey, which
used more regional acquisition parameters. The Merged-
grid provides a high-resolution view of magnetic
anomalous field variations for the entire study area. The
second grid in our analysis was derived from the Parana
basin survey alone.

Table 1 - Main features of the airborne geophysical
surveys.

Projects* | 1012 | 2009 | 2022 | 2025 | 3009 | "Frana
asin

Flight-line

spacing | 1km | 1km | lkm | 1km |0,5km | 6km

Flight

direction | NS | NS | N-S | EW | N-S | N-S

FIIght | 150m | 120m | 150m | 150m | 100m | 1800

height m m m m m m

*1012- Ipora; 2009 — Alto Garcgas; 2022 — Barreiro; 2025-
Rondonépolis; 3009-Goias 01
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Figure 1 — Location of the study area and the airborne
geophysical surveys.

Results

Our procedure is described in the flowchart of figure
2. Using matched filtering analyses of the Parana basin
survey, we determine three main source zones at 26, 6
and 0.8 km depth; using matched filtering analyses of the
Merged-grid four source zones were found at 16, 5.4, 1.1
and 0.3 km depth. The shallower zones for each grid
were not used due to high-frequency noise.

The TILT derivative was used to delineate linear
structures from the depth section.

We identified four main regions separated by three
major NE-SW trending magnetic discontinuities (Figure
2). These domains were named after geographic
locations as follows, from east to west: Arendpolis, Bom
Jardim de Goias, Rondonodpolis and Poxoréo. The strong
magnetic discontinuity separating the Arenépolis and
Bom Jardim de Goias domains (A) is named after the
Serra Negra fault (Seer, 1985). Northwestward, we define
the Baliza (B) and General Carneiro (C) lineaments. The
NW-SE lineament (D) is also an important structure, here
named the Sao Vicente lineament, which crosses the Sao
Vicente granite in the Mato Grosso.
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Discussion

Linear magnetic signatures with large wavelengths
separate distinct magnetic domains that originate from the
deepest parts of the magnetic section. We determined
depths of 16 and 26 km by applying matched filtering to
the Merged-grid and Paranad basin survey, respectively
(Figure 2). The lineaments correspond to NE-SW crustal
discontinuities of the Precambrian basement, separating
different geotectonic compartments. The Serra Negra
lineament separates the Arenopolis magmatic arc from a
different Precambrian terrain, probably belonging to the
Paraguay Belt.

The intermediate zone lies at 5.4 or 6 km depth, as
determined from the Merged-grid and Parand basin
survey, respectively. We interpret this zone as plastic to
brittle domains that possibly provided the development of
regional structures, represented by first-order lineaments
in figure 2. Dextral sigmoidal lineaments are strongly
enhanced at this depth level. Dextral offsets in trend of
higher frequencies lineaments, when compared to deeper
zones, reflect possible narrowing of the fault system root
and the appearance of shallower and brittle splay faults
from this major structure.

The 1 km depth level is related predominantly to
brittle tectonism, with linear magnetic features. The
magnetically well-expressed Serra Negra fault is the
tectonic contact between the Devonian sequence of the
Parana Basin and the Cambrian Macacos granite,
suggesting that the Serra Negra lineament was
reactivated as a fault after the Devonian period. NW-SE
trending lineaments obliterate most of NE-SW structures.
The S&o Vicente discontinuity is the most pronounced
magnetic feature with this trend. Seismicity and
Cretaceous alkaline plutons are aligned along these
structures (Figure 2). The basalts of the Serra Geral
Formation are strongly enhanced at this level.

The tilt derivative analysis illuminated several highly
deformed 500 Ma granite plutons, which we interpreted to
have been deformed by dextral sigmoidal shear zones.

Conclusions

The first tectonic elements of the Transbrasiliano
lineament shear zone were related to the NE-SW trending
Serra Negra and General Carneiro lineaments.
Subsequent reactivation invoked dextral strike-slip
deformation, manifested by the Baliza lineament and
displacement of the Macacos granite along the Serra
Negra fault.

The NE-SW dextral Transbrasiliano transcurrent
system and subsequent reactivations cause subsidence
that accommodated the initial sediments of Parana basin.
It also caused vertical and horizontal displacements along
faults that formed smaller depocenters.

The Mesozoic Atlantic Ocean opening resulted in
northwest-trending  structures, which affected and
contributed to reactivation processes of the northeast-
trending structures associated with the Transbrasiliano
lineament. Northwest-striking structures remain
seismically active today.
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Figure 2 — Grids and interpretation derived by application of matched filtering analysis and tilt-derivative analyses. In Ato C
and E images, the Parana basin survey grids overlays the merged-grid. A: Anomalous magnetic field. B to D: Matched
filtering results. E: Tilt derivative and the interpreted geological features. Lineaments A to D are, as follows: Serra Negra,

Baliza, General Carneiro and Sao Vicente.
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